
NSYSU  Li Lee  Fall 2007 

 52

Chapter 3  Vector Space  

(Scalar) multiplication and (vector) addition in n\  are defined by 
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for any , n∈x y \  and any scalar α . 

Definition: Let V  be a set with elements defined over a field F  
(usually, \  or ^). Let “+” and “i” be the addition and scalar 
multiplication operations defined on V , respectively. Then ( , , )V + i  
forms a vector space if axioms A1 ~ A8 hold. 
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A1. + = +x y y x for any x and y  in V . 
A2. ( ) ( )+ + = + +x y z x y z  for any , ,x y z in V . 
A3. There exists an element 0 (or denoted by V0 ) in V  such that 

+ =x 0 x for any V∈x . 
A4. For any V∈x , there exists an element -x  in V  such that 

(- )+ =x x 0.  (By A1, it can be written as (- ) + =x x 0 as well.) 
A5. ( )α α α+ = +x y x yi i i  for each real number α  and any x 

and y  in V . 
A6. ( )α β α β+ = +x x xi i i  for any real numbers α  and β  and 

any V∈x . 
A7. ( ) ( )αβ α β=x xi i i  for any real numbers α  and β  and any 

V∈x . 
A8. 1 =x xi  for all V∈x . 
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Note: Two important closure properties implicitly existed in these 
axioms are: 
C1.  If V∈x  and α  is a scalar, then Vα ∈x  (with :α α=x xi ). 
C2.  If , V∈x y , then V+ ∈x y . 
 
(Because, without C1 and C2, the scalar products in A5 ~ A7 and the 
vector addition in A1 all become meaningless, respectively.)  Use the set  

{( ,1) }W a a= ∈\  
as an example to explain the failure of the closure properties. And explain 
why A1 ~ A8 can’t all be true for W  with operations +  and i. So, 
( , , )W + i  is not a vector space. 
 
• We call elements in V  vectors. However, vectors need not be real 

vectors in n\ .  
( n\ 被稱之為歐基里德向量空間,Euclidean vector space) 
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• m n×\  with the usual matrix addition and scalar multiplication is a 
vector space 

• Denote [ , ]C a b  the set of all real-valued functions that are defined 
and continuous on the closed interval [ , ]a b . Then ( [ , ], , )C a b + i  
forms a vector space with the usual definitions of “+” and “i” as 

( )( ) ( ) ( )
( )( ) ( )

f g x f x g x
f x f xα α

+ = +
=  

 Now vectors are continuous functions in [ ],C a b . 

• Denote nP  the set of all polynomials of degree less than n . 
Define 

( )( ) ( ) ( )
( )( ) ( )

p q x p x q x
p x p xα α

+ = +
=  

( , , )nP + i  is also a vector space with vectors being polynomials. 
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Theorem 3.1.1: If V  is a vector space and V∈x  is arbitrary, then 
(i) 0 V=x 0  
(ii) V+ =x y 0  implies that -=y x 
(iii) ( 1) -− =x x 
Explanation: (i) says that multiplying the scalar 0 to any V∈x  

gets the zero vector V0  of V . 
(ii) says that if V+ =x y 0 , then y  is the additive inverse of x. 
(iii) says that the additive inverse of x  can be obtained by 
multiplying x with the scalar ( 1)− . 
 
Exercises 7 & 8: (in p. 122)  Let V  be a vector space with 
arbitrary vectors x, y , and z.  Show that 
(1) The element 0 in V  is unique.  (加法單位向量的唯一性) 
(2) If + = +x y x z , then =y z .  (消除法可適用) 
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Proof: For (1): Let ≠δ 0 be another unit of addition satisfying A3, 
i.e. for V∀ ∈x , + =x δ x. Set =x 0, by A1 we get a contradiction. 
For (2): By A4, - V∃ ∈x  such that (- )+ =x x 0.  Thus 

   (- ) ( ) (- ) ( )
                        (- ) (- )
                        

+ = + ⇒ + + = + +
⇒ + + = + +
⇒ + = +

x y x z x x y x x z
x x y x x z
0 y 0 z

 

 ⇒ =y z.                                    
 
註：同學可嘗試練習做 Exercise 9 看看。 
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§ 3-2  Subspaces 
 
Given a vector space V , it is often possible to form another vector space 
by taking a subset S  of V  and using the operations of V . 
 

Example 1: Let { }1
2 1

2

xS x xx
⎡ ⎤= =⎢ ⎥⎣ ⎦

, then 2S ⊂ \ . It is easy to see that  

 any S∈x  and any scalar α  ⇒ Sα ∈x  
 any S∈x  and any S∈y  ⇒ S+ ∈x y . 

Moreover, A1 ~ A8 can be verified for ( , , )S + i . So, it is a vector space. 
 
Definition: If S  is a nonempty subset of a vector space V , and S  
satisfies the following conditions: 
(i) Sα ∈x  whenever S∈x  for any scalar α   
(ii) S+ ∈x y  whenever S∈x  and S∈y  
then S  is said to be a subspace of V . 
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Two subsets { }1 2 3 1 2( , , )TS x x x x x= =  and { }2 2
12 21-S A a a×= ∈ =\  of 

3\  and 2 2×\  are given in Examples 2 and 4, respectively. As shown in 
the book, the two closure properties are true for both subsets. By the 
Definition, they are subspaces of 3\  and 2 2×\ , respectively. However, 
as shown in Example 3, though { } 2( ,1)TS x x= ∈ ⊂\ \ , it is not a 
subspace of 2\  because none of the two closure properties holds. 
 
Example 6: Let [ , ]nC a b  be the set of all functions that have a continuous 
nth derivative on [ , ]a b . Then, it is a subspace of [ , ]C a b . 
 
Example 8: Let S  be the set of all f  in 2[ , ]C a b  such that 

( ) ( ) 0f x f x′′ ′+ =  

for all [ , ]x a b∈ . Since S  contains at least the zero function thus is 
nonempty and it is easy to show that conditions (i) and (ii) in above 
Definition hold.  So, S  is a subspace of 2[ , ]C a b . 
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Exercise 5: (in p. 132)  Determine whether or not the following are 
subspaces of 4P . 
Soln.: For (a): The set S  of polys. in 4P  of even degree is not a 
subspace because, for 2( ) : 2 1f x x x= + −  and 2( ) : 2 1g x x x= − + − , 
both are in S , but condition (ii) fails since ( ) ( ) 2 2 .f x g x x S+ = − ∉  
For (d): The set  S  of polys. in 4P  having at least one real root is 
not a subspace because, for 2( ) : 1f x x= −  and ( ) : 2g x x= + , both 
are in S , but condition (ii) fails due to 2( ) ( ) 1f x g x x x+ = + + , 
which has roots ( 1 3 ) / 2i− ± , thus ( ) ( )f x g x S+ ∉ .             
 
Exercise 8 (b):  Let 2 2A ×∈\  be given. Determine whether the set 

2 2
2 : { | }S B AB BA×= ∈ ≠\  is a subspace of 2 2×\ . 

Soln.: Note that 2S∉O . However, this violates condition (i) because, 
for any 2 ,B S∈  0 B⋅ =O.                                  
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Exercise 20: (in p.134) Let U  and V  be subspaces of a vector space W .  
Define 

{ }: |    where  ,   and  U V U V+ = = + ∈ ∈z z u v u v . 

Show that U V+  is a subspace of W . 
Proof: Usually, nonemptiness of the subset S  (i.e. U V+  here) is 
guaranteed. Let’s prove the two closure conditions (i) and (ii) only. 
For (i): For any U V∈ +z , = +z u v  for some U∈u  and V∈v . Let 
α  be an arbitrary scalar. Then  

( ) U Vα αα α= + = ++ ∈u v u vz  
where “∈” is guaranteed by Uα ∈u  and Vα ∈v  and both U  and V  
are vector spaces. 
For (ii): For any 1z  and 2z  in U V+ , we need to show 1 2 U V+ ∈ +z z . 
Can you practice to show it by yourselves?                                
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Definition: Let A be an m n×  matrix. The nullspace of A, is the 
set of all solutions to the homogeneous system A =x 0, i.e.  

( ) : { | }nN A A= ∈ =x x 0\  

•  { } ( ) nN A⊂ ⊂0 \   (集合間的包含關係) 
•  ( )N A  is a vector space. Thus ( )N A  is a subspace of n\ .  

(書上 p.127 有證明) 
 
Example 9:  Let 2 4A ×∈\  be given as in the book, determine ( )N A . 
Sol.:  (1) Use elementary row operations to reduce A into rrefA . (2) Set 
two free variables by 3 4,x xα β= = . (3) Solve 1 2,x x  from equivalent 
system. (4) Use α  and β  to describe the solution to A =x 0 as 

1 1
2 1

1 0
0 1

α β
⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= +x . 
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Definition: Let 1 2, , , nv v v"  be vectors in a vector space V . The set 
of all linear combinations of 1 2, , , nv v v"  is called the span of 

1 2, , , nv v v" , denoted by Span( 1 2, , , nv v v" ) . 
 
Theorem 3.2.1: Span( 1 2, , , nv v v" ) is a subspace of V . 
Proof: See the proof of textbook in the class. The book doesn’t prove 
Span( 1 2, , , nv v v" ) is a nonempty subset of .V                       
 
Definition: The set 1 2{ , , , }nv v v"  is a spanning set for V  if, for 
every vector v  in V , there exist scalars 1 2, , , nc c c"  such that 

1 1 2 2 .n nc c c= + + +v v v v"  
 
Example 11(a): The set 1 2 3{ , , , (1,2,3) }TS = e e e  spans 3\ . However, 
the vector (1,2,3)T  is redundant (since it is formed by a linear 
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combination of the other 3 vectors). Hence S  is not a minimal 
spanning set for 3\ . 
 
Example 12: The set 2 2{1 , 2, }x x x− +  spans 3P . (see textbook for 
the derivation)   Q: Is the set a minimal spanning set? 


